MOONEER SALEM K6AQ

FREEDV DIGITAL VOICE
ABOUT ME

- Been licensed since the early 2000s
 - KG6AOV was my original callsign
- Currently a software developer at a medical device company
 - Primarily C/C++ with some C# and Python thrown in
- Do open source development in my spare time
 - FreeDV being the biggest so far
WHAT IS DIGITAL VOICE?

- Like livestreaming, but for radio
 - Microcontroller or PC converts your analog voice into 1s and 0s
 - Data is then modulated into a signal that our radios can transmit
- Reverse process happens on RX
 - Device demodulates back to 1s and 0s
 - Sound card produces analog signal to speakers/headset
WHY USE DIGITAL VOICE?

- Less bandwidth than a similar analog signal
 - Many digital voice modes cut this in half or potentially more
 - Smaller bandwidth \Rightarrow higher power density \Rightarrow lower minimum SNR
- Digitization of received signal inherently adds some noise immunity
 - Forward error correction can potentially fix significant issues (with various tradeoffs)
FREEDV DIGITAL VOICE

DISADVANTAGES OF DIGITAL VOICE

- Your signal is either Q5 or Q0 ("digital cliff effect")
 - Example: Analog TV vs. ATSC digital TV during DTV transition
- More difficult to implement compared to traditional modes
 - Transceiver circuits readily available for traditional modes
 - Potentially no need to include a microcontroller or other computer control
HOW POPULAR IS IT, ANYWAY?

- In use on VHF/UHF since the early 2000s
 - D-Star first started appearing in Icom radios in 2004
- Significant demand from hams continues through today
 - Example: >200,000 unique DMR IDs
- M17 up and coming
WHY NOT AS MUCH USED ON HF?

- The existing modes use far more bandwidth than is standard
 - Typical SSB voice signal is ~3KHz for comparison
 - Approximately as wide as AM at best (e.g. 6.25 KHz for D-STAR)
 - Limits the locations on the bands where it can be used
- VHF/UHF+ propagation is significantly different than HF
 - Examples: selective fading, sunspot cycle
WHY NOT AS MUCH USED ON HF?

- The existing modes have patent issues
 - AMBE codec as used in DMR and Fusion expires in 2028 (!)
 - D-Star is now okay, however
- Developing a legal product results in increased costs
 - Such costs may be prohibitive for many
WHAT IS AVAILABLE ON HF?

- D-Star is capable of being used on HF
 - The only legacy VHF/UHF+ DV mode that can be
 - Requires an HF-capable Icom radio—a significant expense!
 - 6KHz bandwidth means limits on where it can be used
WHAT IS AVAILABLE ON HF?

- AOR digital voice modems
- Limited hardware availability (“made to order”)
- Significantly expensive even when new
WHAT DOES FREEDV PROVIDE?

- Digital voice modes optimized for HF band conditions
 - 1 to 1.5KHz bandwidth
 - Modes are optimized for HF (i.e. good handling of fading)
- A way to use digital voice with your existing radios
 - If you’re already using FT8, you can use FreeDV
WHAT DOES FREEDV PROVIDE?

- Increased comfort during long radio sessions (e.g. contests)
 - Lack of background noise when signal decodes
- Easier voice contacts if you’re using a compromised station
 - No longer limited to FT8 or other data modes :)
 - QRP is definitely possible!
COMPROMISED STATION EXAMPLE

- Condo with HOA restrictions
 - MFJ mag loop (15-40m)
 - Self-imposed ~50W max power limit to avoid interfering with neighbors
- Decoded signal from recent QSO with K0PFX (St. Louis, MO)
 - ~1600 miles away from QTH
DX EXAMPLE

- QSO between K0PFX and LU5DKI (Jose from Argentina)
 - SSB contact was immediately adjacent
 - Fading was present in the signal received by the radio
 - ~5000 mile path (!)
HIGH QUALITY EXAMPLE

- QSO between K0PFX and WA5QPZ (Austin, TX)
 - Uses “2020” mode for higher voice quality
 - ~700 mile path
WHAT DOES IT LOOK LIKE ON THE AIR

- “Buzzing” type sound if you’re not running FreeDV hardware or software
- Similar to other wide bandwidth data mode
- Multiple carriers on waterfall if using a pan adapter
IS IT LEGAL?

- Disclaimer: I am not a lawyer! Please seek expert legal advice.
 - This will also vary for operation outside of the US
- The ARRL considers digital voice as having designator J2E
 - J = SSB, 2 = single channel with digital information, E = telephony
- See “Practical HF Digital Voice”, May/June 2000 QEX
FREEDV DIGITAL VOICE

IS IT LEGAL?

- J2E is considered a “phone” emission per §97.3(5)(c)
 - §97.305(c) thus governs where DV can be used on HF
 - 60 meters is not allowed (§97.307(f)(14)(i) limits phone to J3E)
- Is FreeDV actually J2E?
 - Theoretically don’t need a SSB radio to transmit it
 - Even if not, §97.3(5)(c) gives a lot of leeway on what’s “phone”
The standard “considerate operator” practices still apply

- ID every 10 minutes, only as much power as needed, etc.
- Some/many of these are actually FCC rules too

Reminder: Listen before transmitting!

- Spectrum is shared and people unfamiliar with FreeDV may end up transmitting on the calling frequencies
WHERE CAN IT BE USED

- Standard conventions match analog voice
 - USB > 10MHz, LSB < 10MHz
- Most activity is on 14.236 MHz +/- QRM
 - 7.177 MHz, 28.330 MHz also common
GETTING ON THE AIR

- FreeDV client application
 - Available at https://freedv.org/
 - Binaries for Windows (32/64 bit) as well as Mac (Intel/ARM)
 - Source code on GitHub
- Requires two sound cards to transmit
 - One of them is likely the same one you use for other digital modes
EASY SETUP

- A new startup screen to streamline FreeDV setup
- Single radio audio device (e.g. one plugged in via USB)
- Supports CAT control and serial PTT configuration
- “Test” button keys radio and emits a constant carrier
ADVANCED SETUP

- Still possible (and required depending on setup)
 - Example: SDR radios using multiple virtual audio cables
- Minimum setup: sound card configuration
- Additional optional setup:
 - CAT control/serial PTT (if not using a VOX based digital interface)
 - PSK/FreeDV Reporter reporting
FREEDV DIGITAL VOICE

SOUND CARD CONFIGURATION

- Tools->Audio Options
 - Two tabs: Receive and Transmit
 - Typically audio devices are reversed on the Transmit tab
FREEDV DIGITAL VOICE

EXAMPLE AUDIO CONFIGURATION

Input To Computer From Radio

<table>
<thead>
<tr>
<th>Device</th>
<th>ID</th>
<th>API</th>
<th>Default Sample Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background Music</td>
<td>0</td>
<td>Core Audio</td>
<td>8000</td>
</tr>
<tr>
<td>Background Music (UI Sounds)</td>
<td>1</td>
<td>Core Audio</td>
<td>8000</td>
</tr>
<tr>
<td>Macbook Pro Microphone</td>
<td>2</td>
<td>Core Audio</td>
<td>48000</td>
</tr>
<tr>
<td>Soundflower (2ch)</td>
<td>4</td>
<td>Core Audio</td>
<td>44100</td>
</tr>
<tr>
<td>Soundflower (64ch)</td>
<td>5</td>
<td>Core Audio</td>
<td>44100</td>
</tr>
<tr>
<td>VB-Cable</td>
<td>6</td>
<td>Core Audio</td>
<td>48000</td>
</tr>
<tr>
<td>VB-Cable A</td>
<td>7</td>
<td>Core Audio</td>
<td>48000</td>
</tr>
<tr>
<td>VB-Cable B</td>
<td>8</td>
<td>Core Audio</td>
<td>48000</td>
</tr>
<tr>
<td>NoMachine Audio Adapter</td>
<td>9</td>
<td>Core Audio</td>
<td>48000</td>
</tr>
<tr>
<td>NoMachine Microphone Adapter</td>
<td>10</td>
<td>Core Audio</td>
<td>48000</td>
</tr>
</tbody>
</table>

Output From Computer To Speaker/Headphones

<table>
<thead>
<tr>
<th>Device</th>
<th>ID</th>
<th>API</th>
<th>Default Sample Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background Music</td>
<td>0</td>
<td>Core Audio</td>
<td>8000</td>
</tr>
<tr>
<td>Background Music (UI Sounds)</td>
<td>1</td>
<td>Core Audio</td>
<td>8000</td>
</tr>
<tr>
<td>Macbook Pro Speakers</td>
<td>3</td>
<td>Core Audio</td>
<td>48000</td>
</tr>
<tr>
<td>Soundflower (2ch)</td>
<td>4</td>
<td>Core Audio</td>
<td>44100</td>
</tr>
<tr>
<td>Soundflower (64ch)</td>
<td>5</td>
<td>Core Audio</td>
<td>44100</td>
</tr>
<tr>
<td>VB-Cable</td>
<td>6</td>
<td>Core Audio</td>
<td>48000</td>
</tr>
<tr>
<td>VB-Cable A</td>
<td>7</td>
<td>Core Audio</td>
<td>48000</td>
</tr>
<tr>
<td>VB-Cable B</td>
<td>8</td>
<td>Core Audio</td>
<td>48000</td>
</tr>
<tr>
<td>NoMachine Audio Adapter</td>
<td>9</td>
<td>Core Audio</td>
<td>48000</td>
</tr>
<tr>
<td>NoMachine Microphone Adapter</td>
<td>10</td>
<td>Core Audio</td>
<td>48000</td>
</tr>
</tbody>
</table>

Input From Microphone To Computer

<table>
<thead>
<tr>
<th>Device</th>
<th>ID</th>
<th>API</th>
<th>Default Sample Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background Music</td>
<td>0</td>
<td>Core Audio</td>
<td>8000</td>
</tr>
<tr>
<td>Background Music (UI Sounds)</td>
<td>1</td>
<td>Core Audio</td>
<td>8000</td>
</tr>
<tr>
<td>Macbook Pro Microphone</td>
<td>2</td>
<td>Core Audio</td>
<td>48000</td>
</tr>
<tr>
<td>Soundflower (2ch)</td>
<td>4</td>
<td>Core Audio</td>
<td>44100</td>
</tr>
<tr>
<td>Soundflower (64ch)</td>
<td>5</td>
<td>Core Audio</td>
<td>44100</td>
</tr>
<tr>
<td>VB-Cable</td>
<td>6</td>
<td>Core Audio</td>
<td>48000</td>
</tr>
<tr>
<td>VB-Cable A</td>
<td>7</td>
<td>Core Audio</td>
<td>48000</td>
</tr>
<tr>
<td>VB-Cable B</td>
<td>8</td>
<td>Core Audio</td>
<td>48000</td>
</tr>
<tr>
<td>NoMachine Audio Adapter</td>
<td>9</td>
<td>Core Audio</td>
<td>48000</td>
</tr>
<tr>
<td>NoMachine Microphone Adapter</td>
<td>10</td>
<td>Core Audio</td>
<td>48000</td>
</tr>
</tbody>
</table>

Output From Computer To Radio

<table>
<thead>
<tr>
<th>Device</th>
<th>ID</th>
<th>API</th>
<th>Default Sample Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background Music</td>
<td>0</td>
<td>Core Audio</td>
<td>8000</td>
</tr>
<tr>
<td>Background Music (UI Sounds)</td>
<td>1</td>
<td>Core Audio</td>
<td>8000</td>
</tr>
<tr>
<td>Macbook Pro Speakers</td>
<td>3</td>
<td>Core Audio</td>
<td>48000</td>
</tr>
<tr>
<td>Soundflower (2ch)</td>
<td>4</td>
<td>Core Audio</td>
<td>44100</td>
</tr>
<tr>
<td>Soundflower (64ch)</td>
<td>5</td>
<td>Core Audio</td>
<td>44100</td>
</tr>
<tr>
<td>VB-Cable</td>
<td>6</td>
<td>Core Audio</td>
<td>48000</td>
</tr>
<tr>
<td>VB-Cable A</td>
<td>7</td>
<td>Core Audio</td>
<td>48000</td>
</tr>
<tr>
<td>VB-Cable B</td>
<td>8</td>
<td>Core Audio</td>
<td>48000</td>
</tr>
<tr>
<td>NoMachine Audio Adapter</td>
<td>9</td>
<td>Core Audio</td>
<td>48000</td>
</tr>
<tr>
<td>NoMachine Microphone Adapter</td>
<td>10</td>
<td>Core Audio</td>
<td>48000</td>
</tr>
</tbody>
</table>

Refresh

- Receive
- Transmit
- Cancel
- Apply
- OK

Play

- Receive
- Transmit
- Cancel
- Apply
- OK

Rec 2s

- Receive
- Transmit
- Cancel
- Apply
- OK
CAT/PTT CONTROL

- Tools->PTT Config
 - Supports all radios that Hamlib does
 - Can also use serial PTT if preferred
EXAMPLE PTT CONFIGURATION

PTT Config

VOX PTT Settings
- Left Channel Vox Tone

Hamlib Settings
- Use Hamlib PTT

- Rig Model: Kenwood TS-2000
- Serial Device (or hostname:port): localhost:5001
- Serial Rate: default
- Serial Params:

Serial Port Settings

PTT Port
- Use Serial Port PTT
- Use DTR
- DTR = +V

PTT In
- Enable PTT Input
- Serial Device:
- CTS = +V
FREEDV DIGITAL VOICE

HARDWARE OPTIONS

- SM1000 handheld microphone
 - US$195 as of October 2023
 - Supports 700D/E as well as 1600
- Only need RJ45<->Radio + power
- Good for portable use
FREEDV DIGITAL VOICE

EZDV

- Handheld device based on the ESP32S3 microcontroller
 - Supports the same modes as the SM1000
 - Can use Icom IC-705 and Flex radios over Wi-Fi (CAT and audio)
- Full day of operation using a 20000 mAh battery
- Charging via USB-C
EZDV

- 3.5mm TRRS jacks on bottom
 - Wired headset as well as PTT/audio for radios without Wi-Fi support
- Source code and HW schematics available, TAPR to sell in 2024
 - https://github.com/tmiw/ezDV
HOW TO FIND CONTACTS

- FreeDV Reporter: https://qso.freedv.org/

- Live TX/RX status of stations using the FreeDV application

- Chatroom style interface to allow for live coordination with other users
FREEDV DIGITAL VOICE

HOW TO FIND CONTACTS

- PSK Reporter
 - Map based view of who can decode your signal
 - Good for determining propagation
HOW TO FIND CONTACTS

- FreeDV Activity Day
 - Third weekend of every month (both Saturday and Sunday)
 - 12AM Pacific (0800Z) - 11:59PM Pacific (0759Z)
 - Not a contest! Just a time for people to get together on the air
FREEDV DIGITAL VOICE

DISCORD

- A chat service that enables troubleshooting and QSO coordination
- Go to https://discord.gg/QrZDwy5n7K to join (or scan QR code)
FREEDV DIGITAL VOICE

DISCORD

FreeDV HF Digital Voice

Events

Announcements

Rules

Text Channels

General

QSO-Finder

Moderator-Only

Voice Channels

General

Other Networks

Freedv-Irc

PSK Reporter Bot Yesterday at 7:10 PM
JA4ECX (PM64VU11TQ) received JA3JHG (PM85AC) on 7200.000 KHz on 2023-01-17 03:06:07

PSK Reporter Bot Yesterday at 11:30 PM
JA4ECX (PM64VU11TQ) received JA3JHG (PM85AC) on 7200.000 KHz on 2023-01-17 07:25:37

PSK Reporter Bot Yesterday at 11:50 PM
JA4ECX (PM64VU11TQ) received JA3JHG (PM85AC) on 7200.000 KHz on 2023-01-17 07:46:15

PSK Reporter Bot Today at 3:10 PM
K0PFX (EM48US) received K5WH (EL29fx) on 14236.000 KHz on 2023-01-17 23:07:08
WA6NUT (DM68wt39) received K5WH (EL29fx) on 14236.000 KHz on 2023-01-17 23:05:04
K0SHD (EN14kv08) received K5WH (EL29fx) on 14236.000 KHz on 2023-01-17 23:05:00

January 17, 2023
FREEDV DIGITAL VOICE

WHAT MODE TO USE?

- Different modes available depending on current conditions
 - Most commonly used: 700D/E, 1600, 2020
 - 700D: smallest bandwidth, lowest minimum SNR (-2 dB)
 - 700E: fast fading (e.g. NVIS), a bit more SNR required vs. 700D
 - 1600: mainly used for satellite contacts
 - 2020: highest quality mode available, not as resilient as other modes
WHAT MODE TO USE?

▸ FreeDV will automatically detect and receive the correct mode
 ▸ Detected mode is displayed in the left hand side of the main window

▸ Select the TX mode on the right hand side of the main window
 ▸ Can change TX modes even while transmitting
“Universal” FreeDV mode

- One mode that can work for all HF band conditions
- Simpler usage – no need to select modes to receive or transmit
- Integrates lessons from experiences using the existing modes

Have DSP and codec experience? Come work for us! (Thanks again ARDC!)
WORK IN PROGRESS

- Integration with additional radios
 - External devices currently allow integration with Flex and Icom radios over Wi-Fi
 - Full integration improves ease of use—no need to configure anything or keep track of additional hardware
- Radio manufacturer or have connections to one? Reach out after the talk :)
Thank you!

- Contact me anytime with questions
 - Email: mooneer@gmail.com
 - Discord: themindiswatching
 - Personal GitHub: https://github.com/tmiw
- Or visit the FreeDV/M17/HamOpen booth (#64 and #65)
Q&A